Can Feedback based on Predictive Data Improve Learners' Passing Rates in MOOCs? A Preliminary Analysis

Pérez-Sanagustín, Mar; Pérez-Álvarez, Ronald; Maldonado-Mahauad, Jorge; Villalobos, Esteban; Hilliger, Isabel; Hernández, Josefina; Sapunar, Diego; Moreno-Marcos, Pedro Manuel; Muñoz-Merino, Pedro José; Delgado-Kloos, Carlos; Imaz, Jon

Abstract

This work in progress paper investigates if timely feedback increases learners' passing rate in a MOOC. An experiment conducted with 2,421 learners in the Coursera platform tests if weekly messages sent to groups of learners with the same probability of dropping out the course can improve retention. These messages can contain information about: (1) the average time spent in the course, or (2) the average time per learning session, or (3) the exercises performed, or (4) the video-lectures completed. Preliminary results show that the completion rate increased 12% with the intervention compared with data from 1,445 learners that participated in the same course in a previous session without the intervention. We discuss the limitations of these preliminary results and the future research derived from them.

Más información

Fecha de publicación: 2021
Año de Inicio/Término: Junio, 2021
Página de inicio: 339
Página final: 342
Idioma: Inglés
URL: https://doi.org/10.1145/3430895.3460991
DOI:

10.1145/3430895.3460991