H-infinity-Based Terrain Disturbance Rejection for Hydraulically Actuated Mobile Manipulators With a Nonrigid Link
Abstract
Decoupling the end-effector motion from that of the mobile base of mobile manipulators traversing uneven terrains is important. This is especially so in mining, where material spillage from excavators and front-end loaders reduces productivity and slows down operations because of increased clean-up and maintenance times. Thus, this article proposes a strategy that relies on H-infinity feedback control combined with feedforward action to improve the rejection of terrain disturbances that affect the orientation of the end-effector. The dynamic model of the mobile manipulator considers a floating base with nonpermanent contacts at each wheel, hydraulic actuators with nonlinear dynamics and a nonrigid arm. The arm flexibility is modeled as a passive spring-damper joint to account for inherent cantilever effects of real excavators and loaders. The analysis considers three different H-infinity controller structures (single-input single-output (SISO) with feedforward, single-input multiple-output without feedforward, and multiple-input multiple-output without feedforward) to determine the benefits or disadvantages of employing the pitch rate of the mobile base as a feedforward control action or as an input handled by the H-infinity controller and using only the end-effector actuator or also the other actuated joints of the arm. The root-mean-square error (RMSE) was reduced between 73.8%-86.0% when driving an industrial semiautonomous skid-steer loader over a ramp using the SISO H-infinity controller with feedforward action. The tilt angle error was kept on average less than 0.9 +/- 0.1 degrees. The same controller yields a reduction of the RMSE between 23.5%-38.4% and a tilt angle error smaller than 3.39 +/- 0.07 degrees on average when traversing over a bump. Hence, the strategy proposed to reject ground disturbances should contribute to reducing material spillage of existing autonomous machines that navigate with little operator intervention along mining galleries, but that cannot avoid disturbing material lying on the ground or the characteristic unevenness of mining terrains.
Más información
Título según WOS: | H-infinity-Based Terrain Disturbance Rejection for Hydraulically Actuated Mobile Manipulators With a Nonrigid Link |
Título de la Revista: | IEEE-ASME TRANSACTIONS ON MECHATRONICS |
Volumen: | 25 |
Número: | 5 |
Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Fecha de publicación: | 2020 |
Página de inicio: | 2523 |
Página final: | 2533 |
DOI: |
10.1109/TMECH.2020.2983072 |
Notas: | ISI |