Boundary singularities for weak solutions of semilinear elliptic problems

Del Pino M.; Musso, M; Pacard F.

Abstract

Let Ω be a bounded domain in RN, N ≥ 2, with smooth boundary ∂Ω. We construct positive weak solutions of the problem Δ u + up = 0 in Ω, which vanish in a suitable trace sense on ∂Ω, but which are singular at prescribed isolated points if p is equal or slightly above frac(N + 1, N - 1). Similar constructions are carried out for solutions which are singular at any given embedded submanifold of ∂Ω of dimension k ∈ [0, N - 2], if p equals or it is slightly above frac(N - k + 1, N - k - 1), and even on countable families of these objects, dense on a given closed set. The role of the exponent frac(N + 1, N - 1) (first discovered by Brezis and Turner [H. Brezis, R. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977) 601-614]) for boundary regularity, parallels that of frac(N, N - 2) for interior singularities. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Boundary singularities for weak solutions of semilinear elliptic problems
Título según SCOPUS: Boundary singularities for weak solutions of semilinear elliptic problems
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 253
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2007
Página de inicio: 241
Página final: 272
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123607001887
DOI:

10.1016/j.jfa.2007.05.023

Notas: ISI, SCOPUS