Structure of bounded topological-sequence-entropy minimal systems

Maass A.; Shao, S

Abstract

In this article we prove that a minimal topological dynamical system (X, T) with bounded topological sequence entropy has the following structure.Here π is the maximal equicontinuous factor of (X, T), σ′ and τ′ are proximal extensions and π′ is a finite-to-one equicontinuous extension. In order to prove this result we consider sequence entropy tuples and give their complete relation with regionally proximal tuples. © 2007 London Mathematical Society.

Más información

Título según WOS: Structure of bounded topological-sequence-entropy minimal systems
Título según SCOPUS: Structure of bounded topological-sequence-entropy minimal systems
Título de la Revista: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
Volumen: 76
Número: 3
Editorial: Wiley
Fecha de publicación: 2007
Página de inicio: 702
Página final: 718
Idioma: English
URL: http://jlms.oxfordjournals.org/cgi/doi/10.1112/jlms/jdm080
DOI:

10.1112/jlms/jdm080

Notas: ISI, SCOPUS