Structure of bounded topological-sequence-entropy minimal systems
Abstract
In this article we prove that a minimal topological dynamical system (X, T) with bounded topological sequence entropy has the following structure.Here π is the maximal equicontinuous factor of (X, T), σ′ and τ′ are proximal extensions and π′ is a finite-to-one equicontinuous extension. In order to prove this result we consider sequence entropy tuples and give their complete relation with regionally proximal tuples. © 2007 London Mathematical Society.
Más información
Título según WOS: | Structure of bounded topological-sequence-entropy minimal systems |
Título según SCOPUS: | Structure of bounded topological-sequence-entropy minimal systems |
Título de la Revista: | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES |
Volumen: | 76 |
Número: | 3 |
Editorial: | Wiley |
Fecha de publicación: | 2007 |
Página de inicio: | 702 |
Página final: | 718 |
Idioma: | English |
URL: | http://jlms.oxfordjournals.org/cgi/doi/10.1112/jlms/jdm080 |
DOI: |
10.1112/jlms/jdm080 |
Notas: | ISI, SCOPUS |