Voltage compartmentalization in dendritic spines in vivo
Abstract
Dendritic spines mediate most excitatory neurotransmission in the nervous system, so their function must be critical for the brain. Spines are biochemical compartments, but could also electrically modify synaptic potentials. Using two-photon microscopy and a genetically-encoded voltage indicator, we measured membrane potentials in spines and dendrites from pyramidal neurons in somatosensory cortex of mice during spontaneous activity and sensory stimulation. Spines and dendrites were depolarized together during action potentials, but, during subthreshold and resting potentials, spines often experienced different voltages than parent dendrites, even activating independently. Spine voltages remained compartmentalized after two-photon optogenetic activation of individual spine heads. We conclude that spines are elementary voltage compartments. The regulation of voltage compartmentalization could be important for synaptic function and plasticity, dendritic integration, and disease states.
Más información
Título de la Revista: | SCIENCE |
Editorial: | AMER ASSOC ADVANCEMENT SCIENCE |
Fecha de publicación: | 2021 |
DOI: |
10.1126/science.abg0501. |