Motion-induced inertial effects and topological phase transitions in skyrmion transport
Abstract
When the skyrmion dynamics beyond the particle-like description is considered, this topological structure can deform due to a self-induced field. In this work, we perform Monte Carlo simulations to characterize the skyrmion deformation during its steady movement. In the low-velocity regime, the deformation in the skyrmion shape is quantified by an effective inertial mass, which is related to the dissipative force. When skyrmions move faster, the large self-induced deformation triggers topological transitions. These transitions are characterized by the proliferation of skyrmions and a different total topological charge, which is obtained as a function of the skyrmion velocity. Our findings provide an alternative way to describe the dynamics of a skyrmion that accounts for the deformations of its structure. Furthermore, such motion-induced topological phase transitions make it possible to control the number of ferromagnetic skyrmions through velocity effects.
Más información
Título según WOS: | Motion-induced inertial effects and topological phase transitions in skyrmion transport |
Título de la Revista: | JOURNAL OF PHYSICS-CONDENSED MATTER |
Volumen: | 33 |
Número: | 26 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2021 |
DOI: |
10.1088/1361-648X/ABFB8C |
Notas: | ISI |