Improving search engines by query clustering
Abstract
In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
Más información
Título según WOS: | Improving search engines by query clustering |
Título según SCOPUS: | Improving search engines by query clustering |
Título de la Revista: | JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY |
Volumen: | 58 |
Número: | 12 |
Editorial: | John Wiley & Sons Inc. |
Fecha de publicación: | 2007 |
Página de inicio: | 1793 |
Página final: | 1804 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/asi.20627 |
DOI: |
10.1002/asi.20627 |
Notas: | ISI, SCOPUS |