Improving search engines by query clustering
Abstract
In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
Más información
| Título según WOS: | Improving search engines by query clustering |
| Título según SCOPUS: | Improving search engines by query clustering |
| Título de la Revista: | JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY |
| Volumen: | 58 |
| Número: | 12 |
| Editorial: | John Wiley & Sons Inc. |
| Fecha de publicación: | 2007 |
| Página de inicio: | 1793 |
| Página final: | 1804 |
| Idioma: | English |
| URL: | http://doi.wiley.com/10.1002/asi.20627 |
| DOI: |
10.1002/asi.20627 |
| Notas: | ISI, SCOPUS |