Improving search engines by query clustering

Baeza-Yates, R; Hurtado C.; Mendoza M.

Abstract

In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.

Más información

Título según WOS: Improving search engines by query clustering
Título según SCOPUS: Improving search engines by query clustering
Título de la Revista: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
Volumen: 58
Número: 12
Editorial: John Wiley & Sons Inc.
Fecha de publicación: 2007
Página de inicio: 1793
Página final: 1804
Idioma: English
URL: http://doi.wiley.com/10.1002/asi.20627
DOI:

10.1002/asi.20627

Notas: ISI, SCOPUS