Perturbing singular solutions of the Gelfand problem
Abstract
The equation - Δu = λeu posed in the unit ball B ⊆â„N , with homogeneous Dirichlet condition u|∂B = 0, has the singular solution U = log 1/x2 when λ = 2(N -2). If N ≥ 4 we show that under small deformations of the ball there is a singular solution (u, λ) close to (U,2(N -2)). In dimension JV ≥ 11 it corresponds to the extremal solution -the one associated to the largest λ for which existence holds. In contrast, we prove that if the deformation is sufficiently large then even when N > 10, the extremal solution remains bounded in many cases. © World Scientific Publishing Company.
Más información
Título según WOS: | Perturbing singular solutions of the Gelfand problem |
Título según SCOPUS: | Perturbing singular solutions of the gelfand problem |
Título de la Revista: | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS |
Volumen: | 9 |
Número: | 5 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2007 |
Página de inicio: | 639 |
Página final: | 680 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0219199707002575 |
DOI: |
10.1142/S0219199707002575 |
Notas: | ISI, SCOPUS |