Perturbing singular solutions of the Gelfand problem

Dávila J.; Dupaigne L

Abstract

The equation - Δu = λeu posed in the unit ball B ⊆ℝN , with homogeneous Dirichlet condition u|∂B = 0, has the singular solution U = log 1/x2 when λ = 2(N -2). If N ≥ 4 we show that under small deformations of the ball there is a singular solution (u, λ) close to (U,2(N -2)). In dimension JV ≥ 11 it corresponds to the extremal solution -the one associated to the largest λ for which existence holds. In contrast, we prove that if the deformation is sufficiently large then even when N > 10, the extremal solution remains bounded in many cases. © World Scientific Publishing Company.

Más información

Título según WOS: Perturbing singular solutions of the Gelfand problem
Título según SCOPUS: Perturbing singular solutions of the gelfand problem
Título de la Revista: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Volumen: 9
Número: 5
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2007
Página de inicio: 639
Página final: 680
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0219199707002575
DOI:

10.1142/S0219199707002575

Notas: ISI, SCOPUS