Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation***
Abstract
In this work we study the semi-discrete linearized Benjamin-Bona-Mahony equation (BBM) which is a model for propagation of one-dimensional, unidirectional, small amplitude long waves in non-linear dispersive media. In particular, we derive a stability estimate which yields a unique continuation property. The proof is based on a Carleman estimate for a finite difference approximation of Laplace operator with boundary observation in which the large parameter is connected to the mesh size.
Más información
Título según WOS: | Stability estimate for the semi-discrete linearized Benjamin-Bona-Mahony equation*** |
Título de la Revista: | ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS |
Volumen: | 27 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2021 |
DOI: |
10.1051/cocv/2021087 |
Notas: | ISI |