Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature
Abstract
The aim of this work is to prove the existence of regular time-periodic solutions for a generalized Boussinesq model (with nonlinear diffusion for the equations of velocity and temperature). The main idea is to obtain higher regularity (of H 3 type) for temperature than for velocity (of H 2 type), using specifically the Neumann boundary condition for temperature. In fact, the case of Dirichlet condition for temperature remains as an open problem. © 2007 The Royal Society.
Más información
| Título según WOS: | Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature |
| Título según SCOPUS: | Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature |
| Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES |
| Volumen: | 463 |
| Número: | 2085 |
| Editorial: | ROYAL SOC |
| Fecha de publicación: | 2007 |
| Página de inicio: | 2153 |
| Página final: | 2164 |
| Idioma: | English |
| URL: | http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2007.1867 |
| DOI: |
10.1098/rspa.2007.1867 |
| Notas: | ISI, SCOPUS |