Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature

Climent-Ezquerra, B; Guillen-Gonzalez, F; Rojas-Medar, MA

Abstract

The aim of this work is to prove the existence of regular time-periodic solutions for a generalized Boussinesq model (with nonlinear diffusion for the equations of velocity and temperature). The main idea is to obtain higher regularity (of H 3 type) for temperature than for velocity (of H 2 type), using specifically the Neumann boundary condition for temperature. In fact, the case of Dirichlet condition for temperature remains as an open problem. © 2007 The Royal Society.

Más información

Título según WOS: Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature
Título según SCOPUS: Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature
Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
Volumen: 463
Número: 2085
Editorial: ROYAL SOC
Fecha de publicación: 2007
Página de inicio: 2153
Página final: 2164
Idioma: English
URL: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2007.1867
DOI:

10.1098/rspa.2007.1867

Notas: ISI, SCOPUS