Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operator
Abstract
Let φ{symbol} and θ be two increasing homeomorphisms from R onto R with φ{symbol} (0) = 0, θ (0) = 0. Let f : [0, 1] × R × R {mapping} R be a function satisfying Carathéodory's conditions, and for each i, i = 1, 2, ..., m - 2, let ai : R {mapping} R, be a continuous function, with ∑i = 1 m - 2 ai (0) = 1, ξi ∈ (0, 1), 0 < ξ1 < ξ2 < ⋯ < ξm - 2 < 1. In this paper we first prove a suitable continuation lemma of Leray-Schauder type which we use to obtain several existence results for the m-point boundary value problem:{Mathematical expression}. We note that this problem is at resonance, in the sense that the associated m-point boundary value problem(φ{symbol} (u′ (t)))′ = 0, t ∈ (0, 1), u′ (0) = 0, θ (u (1)) = underover(∑, i = 1, m - 2) θ (u (ξi)) ai (u′ (ξi)) has the non-trivial solution u (t) = Ï, where Ï âˆˆ R is an arbitrary constant vector, in view of the assumption ∑i = 1 m - 2 ai (0) = 1. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operator |
Título según SCOPUS: | Some multipoint boundary value problems of Neumann-Dirichlet type involving a multipoint p-Laplace like operator |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 333 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2007 |
Página de inicio: | 247 |
Página final: | 264 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X06010511 |
DOI: |
10.1016/j.jmaa.2006.09.054 |
Notas: | ISI, SCOPUS |