Complexity of the bisection method

Gutierrez C.; Gutierrez, F

Abstract

The bisection method is the consecutive bisection of a triangle by the median of the longest side. In this paper we prove a subexponential asymptotic upper bound for the number of similarity classes of triangles generated on a mesh obtained by iterative bisection, which previously was known only to be finite. The relevant parameter is γ / σ, where γ is the biggest and σ is the smallest angle of the triangle. We get this result by introducing a taxonomy of triangles that precisely captures the behaviour of the bisection method. We also prove that the number of directions on the plane given by the sides of the triangles generated is finite. Additionally, we give purely geometrical and intuitive proofs of classical results for the bisection method. © 2007 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Complexity of the bisection method
Título según SCOPUS: Complexity of the bisection method
Título de la Revista: THEORETICAL COMPUTER SCIENCE
Volumen: 382
Número: 2
Editorial: Elsevier
Fecha de publicación: 2007
Página de inicio: 131
Página final: 138
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0304397507001740
DOI:

10.1016/j.tcs.2007.03.004

Notas: ISI, SCOPUS