Multiresolution schemes for strongly degenerate parabolic equations in one space dimension
Abstract
An adaptive finite volume method for one-dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third-order Runge-Kutta method for the time discretization, a third-order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation-consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc.
Más información
Título según WOS: | Multiresolution schemes for strongly degenerate parabolic equations in one space dimension |
Título según SCOPUS: | Multiresolution schemes for strongly degenerate parabolic equations in one space dimension |
Título de la Revista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
Volumen: | 23 |
Número: | 3 |
Editorial: | WILEY-BLACKWELL |
Fecha de publicación: | 2007 |
Página de inicio: | 706 |
Página final: | 730 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/num.20206 |
DOI: |
10.1002/num.20206 |
Notas: | ISI, SCOPUS - WOS |