Generalized Jordan algebras
Abstract
We study commutative algebras which are generalizations of Jordan algebras. The associator is defined as usual by (x, y, z) = (x y)z - x(y z). The Jordan identity is (x2, y, x) = 0. In the three generalizations given below, t, β, and γare scalars. ((x x)y)x + t((x x)x)y = 0, ((x x)x)(y x) - (((x x)x)y)x = 0, β((x x)y)x + γ((x x)x)y - (β + γ)((y x)x)x = 0. We show that with the exception of a few values of the parameters, the first implies both the second and the third. The first is equivalent to the combination of ((x x)x)x = 0 and the third. We give examples to show that our results are in some reasonable sense, the best possible. © 2006 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Generalized Jordan algebras |
| Título según SCOPUS: | Generalized Jordan algebras |
| Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
| Volumen: | 422 |
| Número: | 1 |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2007 |
| Página de inicio: | 326 |
| Página final: | 330 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379506004770 |
| DOI: |
10.1016/j.laa.2006.10.028 |
| Notas: | ISI, SCOPUS |