Generalized Jordan algebras

Hentzel, IR; Labra, A

Abstract

We study commutative algebras which are generalizations of Jordan algebras. The associator is defined as usual by (x, y, z) = (x y)z - x(y z). The Jordan identity is (x2, y, x) = 0. In the three generalizations given below, t, β, and γare scalars. ((x x)y)x + t((x x)x)y = 0, ((x x)x)(y x) - (((x x)x)y)x = 0, β((x x)y)x + γ((x x)x)y - (β + γ)((y x)x)x = 0. We show that with the exception of a few values of the parameters, the first implies both the second and the third. The first is equivalent to the combination of ((x x)x)x = 0 and the third. We give examples to show that our results are in some reasonable sense, the best possible. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Generalized Jordan algebras
Título según SCOPUS: Generalized Jordan algebras
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 422
Número: 1
Editorial: Elsevier Science Inc.
Fecha de publicación: 2007
Página de inicio: 326
Página final: 330
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379506004770
DOI:

10.1016/j.laa.2006.10.028

Notas: ISI, SCOPUS