On multiplicative perturbation of integral resolvent families
Abstract
In this paper we study multiplicative perturbations for the generator of a strongly continuous integral resolvent family of bounded linear operators defined on a Banach space X. Assuming that a (t) is a creep function which satisfies a (0+) > 0, we prove that if (A, a) generates an integral resolvent, then (A (I + B), a) also generates an integral resolvent for all B ∈ B (X, Z), where Z belongs to a class of admissible Banach spaces. In special instances of a (t) the space Z is proved to be characterized by an extended class of Favard spaces. © 2006 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | On multiplicative perturbation of integral resolvent families |
| Título según SCOPUS: | On multiplicative perturbation of integral resolvent families |
| Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| Volumen: | 327 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2007 |
| Página de inicio: | 1335 |
| Página final: | 1359 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X06004562 |
| DOI: |
10.1016/j.jmaa.2006.04.087 |
| Notas: | ISI, SCOPUS |