On left nilalgebras of left nilindex four satisfying an identity of degree four

Hentzel, IR; Labra, A

Abstract

We extend the concept of commutative nilalgebras to commutative algebras which are not power associative. We shall study commutative algebras A over fields of characteristic ≠ 2, 3 which satisfy the identities x(x(xx)) = 0 and β{x(y(xx)) - x(x(xy))} + γ{y(x(xx)) - x(x(xy))} = 0. In these algebras the multiplication operator was shown to be nilpotent by Correa, Hentzel and Labra [2]. In this paper we prove that for every x ∈ A we have A(A((xx)(xx))) = 0. We prove that there is an ideal I of A satisfying AI = IA = 0 and A/I is power associative. © World Scientific Publishing Company.

Más información

Título según WOS: On left nilalgebras of left nilindex four satisfying an identity of degree four
Título según SCOPUS: On left nilalgebras of left nilindex four satisfying an identity of degree four
Título de la Revista: INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
Volumen: 17
Número: 1
Editorial: World Scientific
Fecha de publicación: 2007
Página de inicio: 27
Página final: 35
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218196707003329
DOI:

10.1142/S0218196707003329

Notas: ISI, SCOPUS