Type II collapsing of maximal solutions to the Ricci flow in R-2

Daskalopoulos P.; Del Pino M.

Abstract

We consider the initial value problem ut = Δ log u, u (x, 0) = u0 (x) ≥ 0 in R2, corresponding to the Ricci flow, namely conformal evolution of the metric u (d x1 2 + d x2 2) by Ricci curvature. It is well known that the maximal solution u vanishes identically after time T = frac(1, 4 π) ∫R2 u0. Assuming that u0 is radially symmetric and satisfies some additional constraints, we describe precisely the Type II collapsing of u at time T: we show the existence of an inner region with exponentially fast collapsing and profile, up to proper scaling, a soliton cigar solution, and the existence of an outer region of persistence of a logarithmic cusp. This is the only Type II singularity which has been shown to exist, so far, in the Ricci Flow in any dimension. It recovers rigorously formal asymptotics derived by J.R. King [J.R. King, Self-similar behavior for the equation of fast nonlinear diffusion, Philos. Trans. R. Soc. London Ser. A 343 (1993) 337-375]. © 2006 Elsevier Masson SAS. All rights reserved.

Más información

Título según WOS: Type II collapsing of maximal solutions to the Ricci flow in R-2
Título según SCOPUS: Type II collapsing of maximal solutions to the Ricci flow in R2
Título de la Revista: ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
Volumen: 24
Número: 6
Editorial: GAUTHIER-VILLARS/EDITIONS ELSEVIER
Fecha de publicación: 2007
Página de inicio: 851
Página final: 874
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0294144906001053
DOI:

10.1016/j.anihpc.2006.06.006

Notas: ISI, SCOPUS