Concentration on curves for nonlinear Schrodinger equations

Del Pino M.; Kowalczyk M.; Wei, JC

Abstract

We consider the problem ε 2Δu - V (x)u + u p = o. u> 0, u ∈ H 1 (ℝ 2, where p > 1, ε > 0 is a small parameter, and V is a uniformly positive, smooth potential. Let F be a closed curve, nondegenerate geodesic relative to the weighted arc length γ V ω where ω = (p + 1)/(p - 1) - 1/2. We prove the existence of a solution u ∈ concentrating along the whole of γ, exponentially small in e at any positive distance from it, provided that ε is small and away from certain critical numbers. In particular, this establishes the validity of a conjecture raised in [3] in the two-dimensional case. © 2006 Wiley Periodicals, Inc.

Más información

Título según WOS: Concentration on curves for nonlinear Schrodinger equations
Título según SCOPUS: Concentration on curves for nonlinear schrödinger equations
Título de la Revista: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS
Volumen: 60
Número: 1
Editorial: Wiley
Fecha de publicación: 2007
Página de inicio: 113
Página final: 146
Idioma: English
URL: http://doi.wiley.com/10.1002/cpa.20135
DOI:

10.1002/cpa.20135

Notas: ISI, SCOPUS