A new L-infinity estimate in optimal mass transport

Bouchitte, G; Jimenez, C; Rajesh, M

Abstract

Let Ω be a bounded Lipschitz regular open subset of ℝd and let μ, ν be two probablity measures on Ω̄. It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map Tp pushing forward μ on ν and which realizes the Monge-Kantorovich distance Wp(μ, ν). In this paper, we establish an L∞ bound for the displacement map Tp x - x which depends only on p, on the shape of Ω and on the essential infimum of the density f. © 2007 American Mathematical Society.

Más información

Título según WOS: A new L-infinity estimate in optimal mass transport
Título según SCOPUS: A new L8estimate in optimal mass transport
Título de la Revista: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 135
Número: 11
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2007
Página de inicio: 3525
Página final: 3535
Idioma: English
URL: http://www.ams.org/journal-getitem?pii=S0002-9939-07-08877-6
DOI:

10.1090/S0002-9939-07-08877-6

Notas: ISI, SCOPUS