Group actions on Jacobian varieties
Abstract
Consider a finite group G acting on a Riemann surface S, and the associated branched Galois cover πG : S → Y = S/G. We introduce the concept of geometric signature for the action of G, and we show that it captures much information: the geometric structure of the lattice of intermediate covers, the isotypical decomposition of the rational representation of the group G acting on the Jacobian variety JS of S, and the dimension of the subvarieties of the isogeny decomposition of JS. We also give a version of Riemann's existence theorem, adjusted to the present setting.
Más información
Título según WOS: | Group actions on Jacobian varieties |
Título según SCOPUS: | Group actions on Jacobian varieties |
Título de la Revista: | REVISTA MATEMATICA IBEROAMERICANA |
Volumen: | 23 |
Número: | 2 |
Editorial: | EUROPEAN MATHEMATICAL SOC |
Fecha de publicación: | 2007 |
Página de inicio: | 397 |
Página final: | 420 |
Idioma: | English |
Notas: | ISI, SCOPUS |