Rotation topological factors of minimal Z(d)-actions on the Cantor set
Abstract
In this paper we study conditions under which a free minimal ℤd-action on the Cantor set is a topological extension of the action of d rotations, either on the product Td of d 1-tori or on a single 1-torus T1. We extend the notion of linearly recurrent systems defined for ℤ-actions on the Cantor set to ℤd-actions, and we derive in this more general setting a necessary and sufficient condition, which involves a natural combinatorial data associated with the action, allowing the existence of a rotation topological factor of one of these two types. © 2006 American Mathematical Society.
Más información
| Título según WOS: | Rotation topological factors of minimal Z(d)-actions on the Cantor set |
| Título según SCOPUS: | Rotation topological factors of minimal Zd-actions on the cantor set |
| Título de la Revista: | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY |
| Volumen: | 359 |
| Número: | 5 |
| Editorial: | AMER MATHEMATICAL SOC |
| Fecha de publicación: | 2007 |
| Página de inicio: | 2305 |
| Página final: | 2315 |
| Idioma: | English |
| URL: | http://www.ams.org/journal-getitem?pii=S0002-9947-06-04027-X |
| DOI: |
10.1090/S0002-9947-06-04027-X |
| Notas: | ISI, SCOPUS |