Assessing the Accuracy of Google Trends for Predicting Presidential Elections: The Case of Chile, 2006-2021

Vergara-Perucich, Francisco

Abstract

This article presents the results of reviewing the predictive capacity of Google Trends for national elections in Chile. The electoral results of the elections between Michelle Bachelet and Sebastian Piriera in 2006, Sebastian Piriera and Eduardo Frei in 2010, Michelle Bachelet and Evelyn Matthei in 2013, Sebastian Piriera and Alejandro Guillier in 2017, and Gabriel Boric and Jose Antonio Kast in 2021 were reviewed. The time series analyzed were organized on the basis of relative searches between the candidacies, assisted by R software, mainly with the gtrendsR and forecast libraries. With the series constructed, forecasts were made using the Auto Regressive Integrated Moving Average (ARIMA) technique to check the weight of one presidential option over the other. The ARIMA analyses were performed on 3 ways of organizing the data: the linear series, the series transformed by moving average, and the series transformed by Hodrick-Prescott. The results indicate that the method offers the optimal predictive ability.

Más información

Título según WOS: ID WOS:000880872200001 Not found in local WOS DB
Título de la Revista: DATA
Volumen: 7
Número: 11
Editorial: MDPI
Fecha de publicación: 2022
DOI:

10.3390/data7110143

Notas: ISI