Symmetrizable Boolean networks

Aledo, Juan A.; Goles, Eric; Montalva-Medel, Marco; Montealegre, Pedro; Valverde, Jose C.

Abstract

In this work, we provide a procedure that allows us to transform certain kinds of deterministic Boolean networks on minterm or maxterm functions into symmetric ones, so inferring that such symmetrizable networks can present only periodic points of periods 1 or 2. In particular, we deal with generalized parallel (or synchronous) dynamical systems (GPDS) over undirected graphs, i. e., discrete parallel dynamical systems over undirected graphs where some of the self-loops may not appear. We also study the class of anti-symmetric GPDS (which are non-symmetrizable), proving that their periodic orbits have period 4. In addition, we introduce a class of non-symmetrizable systems which admit periodic orbits with arbitrary large periods.

Más información

Título según WOS: Symmetrizable Boolean networks
Título de la Revista: INFORMATION SCIENCES
Volumen: 626
Editorial: Elsevier Science Inc.
Fecha de publicación: 2023
Página de inicio: 787
Página final: 804
DOI:

10.1016/j.ins.2023.01.082

Notas: ISI