Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization

Cominetti R.; Peypouquet, J; Sorin S

Abstract

We consider the Tikhonov-like dynamics - over(u, ̇) (t) ∈ A (u (t)) + ε (t) u (t) where A is a maximal monotone operator on a Hilbert space and the parameter function ε (t) tends to 0 as t → ∞ with ∫0 ∞ ε (t) d t = ∞. When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u (t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A-1 (0) provided that the function ε (t) has bounded variation, and provide a counterexample when this property fails. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization
Título según SCOPUS: Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 245
Número: 12
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2008
Página de inicio: 3753
Página final: 3763
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039608003756
DOI:

10.1016/j.jde.2008.08.007

Notas: ISI, SCOPUS