Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization
Abstract
We consider the Tikhonov-like dynamics - over(u, ̇) (t) ∈ A (u (t)) + ε (t) u (t) where A is a maximal monotone operator on a Hilbert space and the parameter function ε (t) tends to 0 as t → ∞ with ∫0 ∞ ε (t) d t = ∞. When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u (t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A-1 (0) provided that the function ε (t) has bounded variation, and provide a counterexample when this property fails. © 2008 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization |
Título según SCOPUS: | Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 245 |
Número: | 12 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2008 |
Página de inicio: | 3753 |
Página final: | 3763 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039608003756 |
DOI: |
10.1016/j.jde.2008.08.007 |
Notas: | ISI, SCOPUS |