A counterexample to a conjecture by De Giorgi in large dimensions
Abstract
We consider the Allen-Cahn equationΔ u + u (1 - u2) = 0 in RN . A celebrated conjecture by E. De Giorgi (1978) states that if u is a bounded solution to this problem such that ∂xN u > 0, then the level sets {u = λ}, λ ∈ R, must be hyperplanes at least if N ≤ 8. We construct a family of solutions which shows that this statement does not hold true for N ≥ 9. To cite this article: M. del Pino et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences.
Más información
| Título según WOS: | A counterexample to a conjecture by De Giorgi in large dimensions |
| Título según SCOPUS: | A counterexample to a conjecture by De Giorgi in large dimensions |
| Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
| Volumen: | 346 |
| Número: | 23-24 |
| Editorial: | ACAD SCIENCES |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1261 |
| Página final: | 1266 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S1631073X08003026 |
| DOI: |
10.1016/j.crma.2008.10.010 |
| Notas: | ISI, SCOPUS |