Finite Impulse Response Errors-in-Variables System Identification Utilizing Approximated Likelihood and Gaussian Mixture Models
Abstract
In this paper a Maximum likelihood estimation algorithm for Finite Impulse Response Errors-in-Variables systems is developed. We consider that the noise-free input signal is Gaussian-mixture distributed. We propose an Expectation-Maximization-based algorithm to estimate the system model parameters, the input and output noise variances, and the Gaussian mixture noise-free input parameters. The benefits of our proposal are illustrated via numerical simulations.
Más información
Título según WOS: | Finite Impulse Response Errors-in-Variables System Identification Utilizing Approximated Likelihood and Gaussian Mixture Models |
Título de la Revista: | IEEE ACCESS |
Volumen: | 11 |
Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Fecha de publicación: | 2023 |
Página de inicio: | 24615 |
Página final: | 24630 |
DOI: |
10.1109/ACCESS.2023.3255827 |
Notas: | ISI |