Finite Impulse Response Errors-in-Variables System Identification Utilizing Approximated Likelihood and Gaussian Mixture Models

Cedeno, Angel L.; Orellana, Rafael; Carvajal, Rodrigo; Godoy, Boris I.; Aguero, Juan C.

Abstract

In this paper a Maximum likelihood estimation algorithm for Finite Impulse Response Errors-in-Variables systems is developed. We consider that the noise-free input signal is Gaussian-mixture distributed. We propose an Expectation-Maximization-based algorithm to estimate the system model parameters, the input and output noise variances, and the Gaussian mixture noise-free input parameters. The benefits of our proposal are illustrated via numerical simulations.

Más información

Título según WOS: Finite Impulse Response Errors-in-Variables System Identification Utilizing Approximated Likelihood and Gaussian Mixture Models
Título de la Revista: IEEE ACCESS
Volumen: 11
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2023
Página de inicio: 24615
Página final: 24630
DOI:

10.1109/ACCESS.2023.3255827

Notas: ISI