Uniqueness of fast travelling fronts in reaction-diffusion equations with delay

Aguerrea, M; Trofimchuk, S; Valenzuela, G

Abstract

We consider positive travelling fronts, u(t,x)=φ(ν•x+ct), φ(-∞)=0, φ(∞)=κ, of the equation ut(t,x)=Δu(t,x)-u(t,x)+g(u(t-h,x)), xεR<sup>m</sup>. This equation is assumed to have exactly two non-negative equilibria: u1=≡0 and u2= ≡κ>0, but the birth function gεC<sup>2</sup>(R, R) may be non-monotone on [0,κ]. We are therefore interested in the so-called monostable case of the time-delayed reaction-diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c, the positive travelling front φ(ν•x+ct) is unique (modulo translations). Note that φ may be non-monotone. To prove uniqueness, we introduce a small parameter =1/c and realize a Lyapunov-Schmidt reduction in a scale of Banach spaces. © 2008 The Royal Society.

Más información

Título según WOS: Uniqueness of fast travelling fronts in reaction-diffusion equations with delay
Título según SCOPUS: Uniqueness of fast travelling fronts in reaction-diffusion equations with delay
Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
Volumen: 464
Número: 2098
Editorial: ROYAL SOC
Fecha de publicación: 2008
Página de inicio: 2591
Página final: 2608
Idioma: English
URL: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2008.0011
DOI:

10.1098/rspa.2008.0011

Notas: ISI, SCOPUS