Uniqueness of fast travelling fronts in reaction-diffusion equations with delay
Abstract
We consider positive travelling fronts, u(t,x)=φ(ν•x+ct), φ(-∞)=0, φ(∞)=κ, of the equation ut(t,x)=Δu(t,x)-u(t,x)+g(u(t-h,x)), xεR<sup>m</sup>. This equation is assumed to have exactly two non-negative equilibria: u1=≡0 and u2= ≡κ>0, but the birth function gεC<sup>2</sup>(R, R) may be non-monotone on [0,κ]. We are therefore interested in the so-called monostable case of the time-delayed reaction-diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c, the positive travelling front φ(ν•x+ct) is unique (modulo translations). Note that φ may be non-monotone. To prove uniqueness, we introduce a small parameter =1/c and realize a Lyapunov-Schmidt reduction in a scale of Banach spaces. © 2008 The Royal Society.
Más información
Título según WOS: | Uniqueness of fast travelling fronts in reaction-diffusion equations with delay |
Título según SCOPUS: | Uniqueness of fast travelling fronts in reaction-diffusion equations with delay |
Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES |
Volumen: | 464 |
Número: | 2098 |
Editorial: | ROYAL SOC |
Fecha de publicación: | 2008 |
Página de inicio: | 2591 |
Página final: | 2608 |
Idioma: | English |
URL: | http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2008.0011 |
DOI: |
10.1098/rspa.2008.0011 |
Notas: | ISI, SCOPUS |