Families of covariance functions for bivariate random fields on spheres

Bevilacqua, Moreno; Diggle, Peter J.; Porcu, Emilio

Abstract

This paper proposes a new class of covariance functions for bivariate random fields on spheres, having the same properties as the bivariate Matern model proposed in Euclidean spaces. The new class depends on the geodesic distance on a sphere; it allows for indexing differentiability (in the mean square sense) and fractal dimensions of the components of any bivariate Gaussian random field having such covariance structure. We find parameter conditions ensuring positive definiteness. We discuss other possible models and illustrate our findings through a simulation study, where we explore the performance of maximum likelihood estimation method for the parameters of the new covariance function. A data illustration then follows, through a bivariate data set of temperatures and precipitations, observed over a large portion of the Earth, provided by the National Oceanic and Atmospheric Administration Earth System Research Laboratory. Crown Copyright (C) 2020 Published by Elsevier B.V. All rights reserved.

Más información

Título según WOS: Families of covariance functions for bivariate random fields on spheres
Título de la Revista: SPATIAL STATISTICS
Volumen: 40
Editorial: ELSEVIER SCI LTD
Fecha de publicación: 2020
DOI:

10.1016/j.spasta.2020.100448

Notas: ISI