ON THE TOPOLOGICAL THEORY OF SELF-DUAL CONNECTIONS OVER NONCOMPACT RIEMANN SURFACES
Abstract
A topological action for self-dual connections over noncompact Riemann surfaces is proposed. The J formulation and the associated linear system are obtained. A new connection is constructed, depending on a Kac-Moody parameter such that its flatness condition is the J-equation associated to the self-dual problem. The algebra of infinitesimal Backlund transformations depending on this Kac-Moody parameter is constructed.
Más información
| Título según WOS: | ID WOS:A1995RU17000010 Not found in local WOS DB |
| Título de la Revista: | LETTERS IN MATHEMATICAL PHYSICS |
| Volumen: | 35 |
| Número: | 2 |
| Editorial: | Springer |
| Fecha de publicación: | 1995 |
| Página de inicio: | 187 |
| Página final: | 195 |
| DOI: |
10.1007/BF00750768 |
| Notas: | ISI |