MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamics
Abstract
Motivation: The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD.
Más información
| Título según WOS: | MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamics |
| Título de la Revista: | BIOINFORMATICS |
| Volumen: | 38 |
| Número: | 23 |
| Editorial: | OXFORD UNIV PRESS |
| Fecha de publicación: | 2022 |
| Página de inicio: | 5191 |
| Página final: | 5198 |
| DOI: |
10.1093/BIOINFORMATICS/BTAC666 |
| Notas: | ISI |