Robust identification of process models from plant data

Goodwin, GC; Aguero, JC; Welsh, JS; Yuz, JI; Adams, GJ; Rojas, CR

Abstract

A precursor to any advanced control solution is the step of obtaining an accurate model of the process. Suitable models can be obtained from phenomenological reasoning, analysis of plant data or a combination of both. Here, we will focus on the problem of estimating (or calibrating) models from plant data. A key goal is to achieve robust identification. By robust we mean that small errors in the hypotheses should lead to small errors in the estimated models. We argue that, in some circumstances, it is essential that special precautions, including discarding some part of the data, be taken to ensure that robustness is preserved. We present several practical case studies to illustrate the results. © 2008 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Robust identification of process models from plant data
Título según SCOPUS: Robust identification of process models from plant data
Título de la Revista: JOURNAL OF PROCESS CONTROL
Volumen: 18
Número: 9
Editorial: ELSEVIER SCI LTD
Fecha de publicación: 2008
Año de Inicio/Término: June 6 - 8, 2007
Página de inicio: 810
Página final: 820
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0959152408001029
DOI:

10.1016/j.jprocont.2008.06.004

Notas: ISI, SCOPUS