Relaxed-inertial proximal point type algorithms for quasiconvex minimization
Abstract
We propose a relaxed-inertial proximal point type algorithm for solving optimization problems consisting in minimizing strongly quasiconvex functions whose variables lie in finitely dimensional linear subspaces. A relaxed version of the method where the constraint set is only closed and convex is also discussed, and so is the case of a quasiconvex objective function. Numerical experiments illustrate the theoretical results.
Más información
| Título de la Revista: | JOURNAL OF GLOBAL OPTIMIZATION |
| Volumen: | 85 |
| Número: | 3 |
| Editorial: | Springer |
| Fecha de publicación: | 2023 |
| Página de inicio: | 615 |
| Página final: | 635 |
| Idioma: | Ingles |
| URL: | https://link.springer.com/article/10.1007/s10898-022-01226-z |
| Notas: | WOS |