DISCRETIZATION OF LINEAR PROBLEMS IN BANACH SPACES: RESIDUAL MINIMIZATION, NONLINEAR PETROV-GALERKIN, AND MONOTONE MIXED METHODS

Muga, Ignacio; van der Zee, Kristoffer G.

Abstract

This work presents a comprehensive discretization theory for abstract linear operator equations in Banach spaces. The fundamental starting point of the theory is the idea of residual minimization in dual norms and its inexact version using discrete dual norms. It is shown that this development, in the case of strictly convex reflexive Banach spaces with strictly convex dual, gives rise to a class of nonlinear Petrov-Galerkin methods and, equivalently, abstract mixed methods with monotone nonlinearity. Under the Fortin condition, we prove discrete stability and quasi-optimal convergence of the abstract inexact method, with constants depending on the geometry of the underlying Banach spaces. The theory generalizes and extends the classical Petrov-Galerkin method as well as existing residual-minimization approaches, such as the discontinuous Petrov-Galerkin method.

Más información

Título según WOS: DISCRETIZATION OF LINEAR PROBLEMS IN BANACH SPACES: RESIDUAL MINIMIZATION, NONLINEAR PETROV-GALERKIN, AND MONOTONE MIXED METHODS
Título de la Revista: SIAM JOURNAL ON NUMERICAL ANALYSIS
Volumen: 58
Número: 6
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2020
Página de inicio: 3406
Página final: 3426
DOI:

10.1137/20M1324338

Notas: ISI