ON THE ACCURACY OF FINITE ELEMENT APPROXIMATIONS TO A CLASS OF INTERFACE PROBLEMS
Abstract
We define piecewise linear and continuous finite element methods for a class of interface problems in two dimensions. Correction terms are added to the right-hand side of the natural method to render it second-order accurate. We prove that the method is second-order accurate on general quasi-uniform meshes at the nodal points. Finally, we show that the natural method, although non-optimal near the interface, is optimal for points O(root h log(1/h)) away from the interface.
Más información
| Título según WOS: | ID WOS:000379063300001 Not found in local WOS DB |
| Título de la Revista: | MATHEMATICS OF COMPUTATION |
| Volumen: | 85 |
| Número: | 301 |
| Editorial: | AMER MATHEMATICAL SOC |
| Fecha de publicación: | 2016 |
| Página de inicio: | 2071 |
| Página final: | 2098 |
| DOI: |
10.1090/mcom3051 |
| Notas: | ISI |