Growth of groups and diffeomorphisms of the interval
Abstract
We prove that, for all α > 0, every finitely generated group of C1+α diffeomorphisms of the interval with sub-exponential growth is almost nilpotent. Consequently, there is no group of C 1+α interval diffeomorphisms having intermediate growth. In addition, we show that the C1+α regularity hypothesis for this assertion is essential by giving a C1 counter-example. © 2008 Birkhaeuser.
Más información
Título según WOS: | Growth of groups and diffeomorphisms of the interval |
Título según SCOPUS: | Growth of groups and diffeomorphisms of the interval |
Título de la Revista: | GEOMETRIC AND FUNCTIONAL ANALYSIS |
Volumen: | 18 |
Número: | 3 |
Editorial: | BIRKHAUSER VERLAG AG |
Fecha de publicación: | 2008 |
Página de inicio: | 988 |
Página final: | 1028 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00039-008-0667-6 |
DOI: |
10.1007/s00039-008-0667-6 |
Notas: | ISI, SCOPUS |