NONLINEAR FEATURE EXTRACTION USING FISHER CRITERION

Bustos, MA; Duarte-Mermoud, MA; Beltran, NH

Abstract

In this paper the problem of nonlinear feature extraction based on the optimization of the Fisher criterion is analyzed. A new nonlinear feature extraction method is proposed. The method does not make use of numerical algorithms and it has an analytical (closed-form) solution. Moreover, no assumptions on the class probability distribution functions are imposed. The proposed method is applied to some standard pattern recognition problems and compared with other classical methodologies already proposed in the literature. The performance of the proposed method turned out to be superior when compared with the other methods studied. © 2008 World Scientific Publishing Company.

Más información

Título según WOS: NONLINEAR FEATURE EXTRACTION USING FISHER CRITERION
Título según SCOPUS: Nonlinear feature extraction using fisher criterion
Título de la Revista: International Journal of Pattern Recognition and Artificial Intelligence
Volumen: 22
Número: 6
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2008
Página de inicio: 1089
Página final: 1119
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218001408006715
DOI:

10.1142/S0218001408006715

Notas: ISI, SCOPUS