Asymptotics at infinity of solutions for p-Laplace equations in exterior domains
Abstract
Let 1 < p < N, and u be a nonnegative solution of - Δp u = f (x, u) on RN {set minus} over(B1, -) where f behaves like | x |- l uq near | x | = ∞ and u = 0, for some constants q ≥ 0 and l ∈ R. We obtain asymptotic decay estimates for u. In particular, our results complete the 'sublinear case' q < p - 1. A related analysis is carried out for systems like - Δp u = f (x, v), - Δp v = g (x, u), where p = 2 corresponds to a Hamiltonian system. In this way we extend and improve some known results of Mitidieri and Pohozaev, Bidaut-Véron and Pohozaev, and other authors. Our proofs use tools such as Harnack inequality, the Maximum Principle, Liouville Theorems and blow-up arguments. © 2008.
Más información
| Título según WOS: | Asymptotics at infinity of solutions for p-Laplace equations in exterior domains |
| Título según SCOPUS: | Asymptotics at infinity of solutions for p-Laplace equations in exterior domains |
| Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
| Volumen: | 69 |
| Número: | 05-jun |
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1615 |
| Página final: | 1628 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0362546X07004609 |
| DOI: |
10.1016/j.na.2007.07.003 |
| Notas: | ISI, SCOPUS |