Fast and slow decay solutions for supercritical elliptic problems in exterior domains

Dávila J.; Del Pino M.; Musso, M; Wei, JC

Abstract

We consider the elliptic problem Δu + u p = 0, u > 0 in an exterior domain, Ω = ℝN\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in ℝN, N ≥ 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(∥x∥ - 2/ p-1 at infinity. In addition, a solution with fast decay O(|x|2-N ) exists if p is close enough from above to the critical exponent. © 2007 Springer-Verlag.

Más información

Título según WOS: Fast and slow decay solutions for supercritical elliptic problems in exterior domains
Título según SCOPUS: Fast and slow decay solutions for supercritical elliptic problems in exterior domains
Título de la Revista: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Volumen: 32
Número: 4
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2008
Página de inicio: 453
Página final: 480
Idioma: English
URL: http://link.springer.com/10.1007/s00526-007-0154-1
DOI:

10.1007/s00526-007-0154-1

Notas: ISI, SCOPUS