On the dominated convergence theorem for the Kurzweil-Stieltjes integral

Abstract

This paper is concerned with a version of the Lebesgue dominated convergence theorem (DCT) which has been stated for the Kurzweil–Stieltjes integral of real functions. Our objective in this work is to analyze the extension of this result to include vector functions with values in Banach spaces. We establish that the mentioned convergence theorem for the Kurzweil–Stieltjes integral can be formulated in weaker versions for reflexive and separable Banach spaces, and spaces having the Schur property, nonetheless it is not verified in the general case. © 2023 Wiley-VCH GmbH.

Más información

Título según WOS: On the dominated convergence theorem for the Kurzweil-Stieltjes integral
Título según SCOPUS: On the dominated convergence theorem for the Kurzweil–Stieltjes integral
Título de la Revista: Mathematische Nachrichten
Volumen: 296
Número: 10
Editorial: John Wiley and Sons Inc.
Fecha de publicación: 2023
Página de inicio: 4559
Página final: 4568
Idioma: English
DOI:

10.1002/mana.202200109

Notas: ISI, SCOPUS