<i>Euclid</i> preparation XXII. Selection of quiescent galaxies from mock photometry using machine learning

Humphrey, A.; Bisigello, Laura; Cunha, P. A.C.; Bolzonella, M.; Fotopoulou, S.; Caputi, K. I.; Tortora, C.; Zamorani, G.; Papaderos, P.; Vergani, D.; Brinchmann, J.; Moresco, M.; Amara, Adam; Auricchio, N.; Baldi, M.; et. al.

Abstract

The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across similar to 15 000deg(2) of the sky. Euclid is expected to detect similar to 12 billion astronomical sources, facilitating new insights into cosmology, galaxy evolution, and various other topics. In order to optimally exploit the expected very large dataset, appropriate methods and software tools need to be developed. Here we present a novel machine-learning-based methodology for the selection of quiescent galaxies using broadband Euclid I-E, Y-E, J(E), and H-E photometry, in combination with multi-wavelength photometry from other large surveys (e.g. the Rubin LSST). The ARIADNE pipeline uses meta-learning to fuse decision-tree ensembles, nearest-neighbours, and deep-learning methods into a single classifier that yields significantly higher accuracy than any of the individual learning methods separately. The pipeline has been designed to have 'sparsity awareness', such that missing photometry values are informative for the classification. In addition, our pipeline is able to derive photometric redshifts for galaxies selected as quiescent, aided by the 'pseudo-labelling' semi-supervised method, and using an outlier detection algorithm to identify and reject likely catastrophic outliers. After the application of the outlier filter, our pipeline achieves a normalised mean absolute deviation of less than or similar to 0.03 and a fraction of catastrophic outliers of less than or similar to 0.02 when measured against the COSMOS2015 photometric redshifts. We apply our classification pipeline to mock galaxy photometry catalogues corresponding to three main scenarios: (i) Euclid Deep Survey photometry with ancillary ugriz, WISE, and radio data; (ii) Euclid Wide Survey photometry with ancillary ugriz, WISE, and radio data; and (iii) Euclid Wide Survey photometry only, with no foreknowledge of galaxy redshifts. In a like-for-like comparison, our classification pipeline outperforms UVJ selection, in addition to the Euclid I-E - Y-E, J(E) - H-E and u - I-E, I-E - J(E) colour-colour methods, with improvements in completeness and the F1-score (the harmonic mean of precision and recall) of up to a factor of 2.

Más información

Título según WOS: Euclid preparation XXII. Selection of quiescent galaxies from mock photometry using machine learning
Título según SCOPUS: ID SCOPUS_ID:85150446861 Not found in local SCOPUS DB
Título de la Revista: ASTRONOMY & ASTROPHYSICS
Volumen: 671
Editorial: EDP SCIENCES S A
Fecha de publicación: 2023
DOI:

10.1051/0004-6361/202244307

Notas: ISI, SCOPUS