Proper minimal sets on compact connected 2-manifolds are nowhere dense
Abstract
Let M2 be a compact connected two-dimensional manifold, with or without boundary, and let f: M2 → M2 be a continuous map. We prove that if M ⊆ M2 is a minimal set of the dynamical system (M2, f) then either M = M2 or M is a nowhere dense subset of M2. Moreover, we add a shorter proof of the recent result of Blokh, Oversteegen and Tymchatyn, that in the former case M2 is a torus or a Klein bottle. © 2008 Cambridge University Press.
Más información
Título según WOS: | Proper minimal sets on compact connected 2-manifolds are nowhere dense |
Título según SCOPUS: | Proper minimal sets on compact connected 2-manifolds are nowhere dense |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 28 |
Número: | 3 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2008 |
Página de inicio: | 863 |
Página final: | 876 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0143385707000740 |
DOI: |
10.1017/S0143385707000740 |
Notas: | ISI, SCOPUS |