Proper minimal sets on compact connected 2-manifolds are nowhere dense

Kolyada, S; Snoha, L; Trofimchuk, S

Abstract

Let M2 be a compact connected two-dimensional manifold, with or without boundary, and let f: M2 → M2 be a continuous map. We prove that if M ⊆ M2 is a minimal set of the dynamical system (M2, f) then either M = M2 or M is a nowhere dense subset of M2. Moreover, we add a shorter proof of the recent result of Blokh, Oversteegen and Tymchatyn, that in the former case M2 is a torus or a Klein bottle. © 2008 Cambridge University Press.

Más información

Título según WOS: Proper minimal sets on compact connected 2-manifolds are nowhere dense
Título según SCOPUS: Proper minimal sets on compact connected 2-manifolds are nowhere dense
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 28
Número: 3
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2008
Página de inicio: 863
Página final: 876
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0143385707000740
DOI:

10.1017/S0143385707000740

Notas: ISI, SCOPUS