Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case

dos Santos, F; Vidal C.

Abstract

The problem of knowing the stability of one equilibrium solution of an analytic autonomous Hamiltonian system in a neighborhood of the equilibrium point in the case where all eigenvalues are pure imaginary and the matrix of the linearized system is non-diagonalizable is considered. We give information about the stability of the equilibrium solution of Hamiltonian systems with two degrees of freedom in the critical case. We make a partial generalization of the results to Hamiltonian systems with n degrees of freedom, in particular, this generalization includes those in [1]. © MAIK Nauka 2008.

Más información

Título según WOS: Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case
Título según SCOPUS: Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case
Título de la Revista: REGULAR & CHAOTIC DYNAMICS
Volumen: 13
Número: 3
Editorial: PLEIADES PUBLISHING INC
Fecha de publicación: 2008
Página de inicio: 166
Página final: 177
Idioma: English
URL: http://link.springer.com/10.1134/S1560354708030039
DOI:

10.1134/S1560354708030039

Notas: ISI, SCOPUS