Clutter Suppression via Hankel Rank Reduction for DFrFT-Based Vibrometry Applied to SAR
Abstract
Hankel rank reduction (HRR) is a method that, by prearranging the data in a Hankel matrix and performing rank reduction via singular value decomposition, suppresses the noise of a time-history vector comprised of the superposition of a finite number of sinusoids. In this letter, the HRR method is studied for performing clutter suppression in synthetic aperture radar (SAR)-based vibrometry. Specifically, three different applications of the HRR method are presented. First, resembling the SAR slow-time signal model, the HRR method is utilized for separating a chirp signal immersed in a sinusoidal clutter. Second, using simulated airborne SAR data with 10 dB of signal-to-clutter ratio, the HRR method is applied to perform target isolation and to improve the results of an SAR-based vibration estimation algorithm. Finally, the vibrometry approach combined with the HRR method is validated using actual airborne SAR data.
Más información
| Título según WOS: | ID WOS:000413955500035 Not found in local WOS DB |
| Título de la Revista: | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS |
| Volumen: | 14 |
| Número: | 11 |
| Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
| Fecha de publicación: | 2017 |
| Página de inicio: | 2052 |
| Página final: | 2056 |
| DOI: |
10.1109/LGRS.2017.2750662 |
| Notas: | ISI |