Assessing influence in Gaussian long-memory models
Abstract
A statistical methodology for detecting influential observations in long-memory models is proposed. The identification of these influential points is carried out by case-deletion techniques. In particular, a Kullback-Leibler divergence is considered to measure the effect of a subset of observations on predictors and smoothers. These techniques are illustrated with an analysis of the River Nile data where the proposed methods are compared to other well-known approaches such as the Cook and the Mahalanobis distances. © 2008 Elsevier Ltd. All rights reserved.
Más información
| Título según WOS: | Assessing influence in Gaussian long-memory models |
| Título según SCOPUS: | Assessing influence in Gaussian long-memory models |
| Título de la Revista: | COMPUTATIONAL STATISTICS & DATA ANALYSIS |
| Volumen: | 52 |
| Número: | 9 |
| Editorial: | ELSEVIER SCIENCE BV |
| Fecha de publicación: | 2008 |
| Página de inicio: | 4487 |
| Página final: | 4501 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0167947308001576 |
| DOI: |
10.1016/j.csda.2008.01.030 |
| Notas: | ISI, SCOPUS |