Assessing influence in Gaussian long-memory models

Palma, W; Bondon P.; Tapia, J

Abstract

A statistical methodology for detecting influential observations in long-memory models is proposed. The identification of these influential points is carried out by case-deletion techniques. In particular, a Kullback-Leibler divergence is considered to measure the effect of a subset of observations on predictors and smoothers. These techniques are illustrated with an analysis of the River Nile data where the proposed methods are compared to other well-known approaches such as the Cook and the Mahalanobis distances. © 2008 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Assessing influence in Gaussian long-memory models
Título según SCOPUS: Assessing influence in Gaussian long-memory models
Título de la Revista: COMPUTATIONAL STATISTICS DATA ANALYSIS
Volumen: 52
Número: 9
Editorial: Elsevier
Fecha de publicación: 2008
Página de inicio: 4487
Página final: 4501
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0167947308001576
DOI:

10.1016/j.csda.2008.01.030

Notas: ISI, SCOPUS