Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators

Quaas, A; Sirakov, B

Abstract

We study uniformly elliptic fully nonlinear equations of the type F (D2 u, D u, u, x) = f (x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; we obtain existence and uniqueness results for nonproper operators whose principal eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for nonproper Isaac's equations. © 2007 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators
Título según SCOPUS: Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators
Título de la Revista: ADVANCES IN MATHEMATICS
Volumen: 218
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2008
Página de inicio: 105
Página final: 135
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0001870807003283
DOI:

10.1016/j.aim.2007.12.002

Notas: ISI, SCOPUS