Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators
Abstract
We study uniformly elliptic fully nonlinear equations of the type F (D2 u, D u, u, x) = f (x). We show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects; we obtain existence and uniqueness results for nonproper operators whose principal eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for nonproper Isaac's equations. © 2007 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators |
Título según SCOPUS: | Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 218 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2008 |
Página de inicio: | 105 |
Página final: | 135 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0001870807003283 |
DOI: |
10.1016/j.aim.2007.12.002 |
Notas: | ISI, SCOPUS |