A unified learning framework for object detection and classification using nested cascades of boosted classifiers
Abstract
In this paper a unified learning framework for object detection and classification using nested cascades of boosted classifiers is proposed. The most interesting aspect of this framework is the integration of powerful learning capabilities together with effective training procedures, which allows building detection and classification systems with high accuracy, robustness, processing speed, and training speed. The proposed framework allows us to build state of the art face detection, eyes detection, and gender classification systems. The performance of these systems is validated and analyzed using standard face databases (BioID, FERET and CMU-MIT), and a new face database (UCHFACE). © 2007 Springer-Verlag.
Más información
Título según WOS: | A unified learning framework for object detection and classification using nested cascades of boosted classifiers |
Título según SCOPUS: | A unified learning framework for object detection and classification using nested cascades of boosted classifiers |
Título de la Revista: | MACHINE VISION AND APPLICATIONS |
Volumen: | 19 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2008 |
Página de inicio: | 85 |
Página final: | 103 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00138-007-0084-0 |
DOI: |
10.1007/s00138-007-0084-0 |
Notas: | ISI, SCOPUS |