Relaxed-inertial proximal point type algorithms for quasiconvex minimization

Grad, S-M; Marcavillaca, R. T.

Abstract

We propose a relaxed-inertial proximal point type algorithm for solving optimization problems consisting in minimizing strongly quasiconvex functions whose variables lie in finitely dimensional linear subspaces. A relaxed version of the method where the constraint set is only closed and convex is also discussed, and so is the case of a quasiconvex objective function. Numerical experiments illustrate the theoretical results. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Más información

Título según WOS: Relaxed-inertial proximal point type algorithms for quasiconvex minimization
Título según SCOPUS: Relaxed-inertial proximal point type algorithms for quasiconvex minimization
Título de la Revista: Journal of Global Optimization
Volumen: 85
Número: 3
Editorial: Springer
Fecha de publicación: 2023
Página de inicio: 615
Página final: 635
Idioma: English
DOI:

10.1007/s10898-022-01226-z

Notas: ISI, SCOPUS