Bregman proximal point type algorithms for quasiconvex minimization
Abstract
We discuss a Bregman proximal point type algorithm for dealing with quasiconvex minimization. In particular, we prove that the Bregman proximal point type algorithm converges to a minimal point for the minimization problem of a certain class of quasiconvex functions without neither differentiability nor Lipschitz continuity assumptions, this class of nonconvex functions is known as strongly quasiconvex functions and, as a consequence, we revisited the general case of quasiconvex functions.
Más información
| Título según WOS: | Bregman proximal point type algorithms for quasiconvex minimization |
| Título de la Revista: | OPTIMIZATION |
| Volumen: | 73 |
| Número: | 3 |
| Editorial: | ABINGDON |
| Fecha de publicación: | 2022 |
| DOI: |
10.1080/02331934.2022.2112580 |
| Notas: | ISI |