Bregman proximal point type algorithms for quasiconvex minimization

Abstract

We discuss a Bregman proximal point type algorithm for dealing with quasiconvex minimization. In particular, we prove that the Bregman proximal point type algorithm converges to a minimal point for the minimization problem of a certain class of quasiconvex functions without neither differentiability nor Lipschitz continuity assumptions, this class of nonconvex functions is known as strongly quasiconvex functions and, as a consequence, we revisited the general case of quasiconvex functions.

Más información

Título según WOS: Bregman proximal point type algorithms for quasiconvex minimization
Título de la Revista: OPTIMIZATION
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2022
DOI:

10.1080/02331934.2022.2112580

Notas: ISI