Bregman proximal point type algorithms for quasiconvex minimization
Abstract
We discuss a Bregman proximal point type algorithm for dealing with quasiconvex minimization. In particular, we prove that the Bregman proximal point type algorithm converges to a minimal point for the minimization problem of a certain class of quasiconvex functions without neither differentiability nor Lipschitz continuity assumptions, this class of nonconvex functions is known as strongly quasiconvex functions and, as a consequence, we revisited the general case of quasiconvex functions.
Más información
Título según WOS: | Bregman proximal point type algorithms for quasiconvex minimization |
Título de la Revista: | OPTIMIZATION |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2022 |
DOI: |
10.1080/02331934.2022.2112580 |
Notas: | ISI |