Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights
Abstract
(Baudouin and Puel 2002 Inverse Problems 18 1537-54), investigated some inverse problems for the evolution Schrödinger equation by means of Carleman inequalities proved under a strict pseudoconvexity condition. We show here that new Carleman inequalities for the Schrödinger equation may be derived under a relaxed pseudoconvexity condition, which allows us to use degenerate weights with a spatial dependence of the type ψ(x) = x e, where e is some fixed direction in . As a result, less restrictive boundary or internal observations are allowed to obtain the stability for the inverse problem consisting in retrieving a stationary potential in the Schrödinger equation from a single boundary or internal measurement. © 2008 IOP Publishing Ltd.
Más información
| Título según WOS: | Inverse problems for the Schrodinger equation via Carleman inequalities with degenerate weights |
| Título según SCOPUS: | Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights |
| Título de la Revista: | INVERSE PROBLEMS |
| Volumen: | 24 |
| Número: | 1 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2008 |
| Idioma: | English |
| URL: | http://stacks.iop.org/0266-5611/24/i=1/a=015017?key=crossref.2e5160ff340cc0f02f4ebacb2294e9b9 |
| DOI: |
10.1088/0266-5611/24/1/015017 |
| Notas: | ISI, SCOPUS |