On large prime actions on Riemann surfaces
Abstract
In this article, we study compact Riemann surfaces of genus g with an automorphism of prime order g + 1. The main result provides a classification of such surfaces. In addition, we give a description of them as algebraic curves, determine and realise their full automorphism groups and compute their fields of moduli. We also study some aspects of their Jacobian varieties such as isogeny decompositions and complex multiplication. Finally, we determine the period matrix of the Accola-Maclachlan curve of genus four.
Más información
Título según WOS: | On large prime actions on Riemann surfaces |
Título de la Revista: | JOURNAL OF GROUP THEORY |
Volumen: | 25 |
Número: | 5 |
Editorial: | WALTER DE GRUYTER GMBH |
Fecha de publicación: | 2022 |
Página de inicio: | 887 |
Página final: | 940 |
DOI: |
10.1515/jgth-2020-0140 |
Notas: | ISI |